



# Aluminium 2017A / 3.1325 / Al-Cu4Mg

## Alternative Designations

EN AW-2017A | Al-Cu4Mg (ISO) | AA2017A (ANSI/AA) | H14 (BS) | A-U4G (AFNOR) | L-3120 (UNE) | A92017 (UNS) | A2017 (JIS) | CM41(17S) (CSA) | GA631 (SIS)

## Key Features

Ductile • High strength • Excellent workability

## Description

Aluminium 2017A / Al-Cu4Mg is an age-hardenable wrought alloy that offers a combination of high strength and good ductility. It is typically used in the aerospace industry for structural components that require a high strength-to-weight ratio. It can be heat treated to achieve a wide range of properties, depending on the desired application. For example, it can be heat treated to produce a strong, yet ductile material that is well suited for use in structural applications.

## Mechanical Properties

|                      |               |
|----------------------|---------------|
| Yield strength       | 135 – 240 MPa |
| Tensile strength     | 250 – 370 MPa |
| Elongation at break  | 8 – 12%       |
| Hardness             | 45 – 105      |
| Module of elasticity | 72.5 GPa      |

## Chemical Composition

|    |            |    |            |
|----|------------|----|------------|
| Al | Rest is Al | N  | -          |
| Bi | -          | Nb | -          |
| C  | -          | Ni | 0.2%       |
| Cd | -          | O  | -          |
| Co | -          | P  | 1.5%       |
| Cr | 0.1%       | Pb | 0.8 – 1.5% |
| Cu | 3.5 – 4.5% | S  | -          |
| Fe | 0.7%       | Si | ≤ 0,80%    |
| H  | -          | Sn | 0.2%       |
| Mg | 0.4 – 0.8% | Ti | 0.2%       |
| Mn | 0.4 – 1%   | V  | -          |
| Mo | -          | Zn | 0.8%       |

## Physical Properties

|                         |                       |
|-------------------------|-----------------------|
| Density                 | 2.8 g/cm <sup>3</sup> |
| Electrical conductivity | 18 – 28 (MS/m)        |
| Thermal conductivity    | 130 – 200 W/m · K     |
| Specific heat capacity  | 860 J/kg · K          |

## Reference

Datasheets provided by Xometry contain materials sourced through trusted OEMs, material distributors, and databases. Please visit [Materialdatacenter.com](https://Materialdatacenter.com) for further information on this material.